
Sepro - System for modelling and simulation of
qualitative network dynamics

Stefan Urbanek <stefan.urbanek@gmail.com>

2018-08-10

Inspired by biochemistry.

Introduction

Objective of this project is to test alternative approach for simulation of network
problems, examine possibility of purely qualitative approach, find primitives
of non-conventional computation of network problem solving and develop a
simulator prototype and set of models that demonstrate the system.

System Design Principles

Development of a system for modeling network complexity is non-trivial as
assumptions based on our more sophisticated knowledge might start creeping
into the design process. Such assumption creep can corrupt the system and
therefore the outcome of the models. As we don’t foresee yet how the ultimate
design looks like, we will use evolutionary iterative approach to the design process.
To stay on track, we constrain our evolutionary process by design principles:

• Completeness and clarity of model description. The model described by
the system has to be complete and should not require other information
than the system specification to be understood.

• Minimal set of assumptions. Assumptions for behaviour or structure
should be kept to minimum. System should provide only primitives and
basic mechanisms from which more complex behavior or structure is to be
composed. The primitives should be as simple as possible. New features
should be evaluated carefully whether they can’t be implemented using
existing mechanisms. If they can, they should be omitted.

• No explicit control flow. There should be no mechanisms in the system
that would guarantee model creators control flow (evaluation order) in

1

atomic way. Model-specific order should always be vulnerable for potential
interference from another model that might be composed.

• Iterative simulation. Modeled system’s state changes iteratively through
state transitions. Absolute time (number of steps) is not observable to the
model.

• Parallel. All components of the model are assumed to operate in parallel
fashion even though the system’s implementation might be fully or partially
serial. Effects of serial computation to the simulation result is considered
an inevitable error of the concrete implementation of the system. Model
results should carry the information about the nature of the computation
engine.

Model

The modeled universe comprises of a system’s state and description of the
system’s dynamics. The state is a graph where we call nodes objects which
have qualitative properties associated with them. The system’s dynamics is a
collection of rules describing system’s behavior called actuators.

To be able to refer to particular components of the model in a human readable
form we use symbols. Each symbol can refer to either particular component of
the model or a type of component.

Definition Model is a tuple M := (S, S → t, A,G) where S is a set of symbols,
S → t is a symbol type table where t is a symbol type, A is a collection of
actuators and G is a graph representing system’s state.

Definition Symbol table S → t is a mapping between a symbol and it’s type:

T := s→ t|s ∈ S, t =

tag
slot
actuator

We say that a symbol st is of type t when st ∈ S ∧ T (st) = t. Set of
symbols St is a set where each symbol is of type t.

Object is indivisible entity representing an instance of relevant concept within
simulated universe. It is a carrier of qualitative properties - tags. State of an
object is denoted by a set of tags.

Definition Object graph G is labeled oriented multigraph of objects (edges)
and relationships (vertices) (O,R). Relationship is a tuple {sslot, o} where
sslot ∈ S and o ∈ O

Definition Object’s qualitative state is a set of symbols {st
1, s

t
2, ..., s

t
n}|st

i ∈ Stag.
We will write it as tags(o)

2

Model

concept labels

structure and behavior

actuators – Agraph – G

s1 s2 s3

s1

s2

s3

→ tag

→ slot

→ tag

→ ……

symbol table – Tsymbols – S

Figure 1: Model

t3

t1

t2

t4

tags

Figure 2: Object tags

3

Slot is a relational property of an objects that references other objects. Slot is a
label of an edge of the object graph. We will use the letter s to denote a slot.

Proposition We say that object o has slots {ss
1, s

s
2, ..., s

s
n} if there exist edges

{o, ss
i}. We will write it as slots(o)

slot

s3

s2

s1

Figure 3: Object slots

Before we proceed with the system’s dynamics, we need to define one more
design concept of the system: local context.

Definition Local context of an object o is a subgraph GL ⊆ G with all objects
and relationships where object o is the inital vertex.

In other words, local conetxt of an object o is a subgraph within a graph distance
of 1 from the object o.

indirect
object

object t2

t 3

t1
indirect
object

out of sight

out of sight

out of sight

t7

t6

t4
t5

t8

t9

Figure 4: Local context

Before we move on with defition of other concepts, we need to define how objects
in the graph can be reffered to. We need to be able to refer to an object within
the local context relatively to the object being considered for evalutaion.

Definition Subject mode is a relative reference to an object in the graph given
initial object.

m :=
{
direct
indirect(sslot)

Subject mode is used to determine which object will be used for pattern matching
in the selector or for applying state transitions. We call the object that is to
be used for evaluation effective subject. Direct subject mode means that the

4

effective subject is the object being evaluated is to be considered. Indirect subject
mode means that the effective subject is the object which is terminal vertex ot of
the relationship {sslot, ot} where the initial vertex is the object being evaluated.

Model Dynamics

The main concepts for the model dynamics are:

• Actuator is a description of an atomic state transition of objects within
the graph matching a pattern.

• Selector is a match pattern or objects subject to transition
• Transition/Modifier is a description of state change affects either object’s

state or local relationships

Pattern matching or state transitions can happen only within a local context. The
local context is an intentional design limitation which restricts that object state
and graph transitions can happen only within distance of 1 from the selected
object. Assumption here is that if we want to reach an object with larger distance
we have to use multiple steps and therefore be open for interference - which is
desired by design.

Actuators

Actuators can be thought as declarations of graph rewrite rules combined with
object state transitions. They are applied to the whole graph1. We assume that
all actuators operate on all objects at once.2

The graph can be modified either through a state of a single object or a state of
two object in their hypothetical interaction.

For observation and controlled simulation purposes the actuators have also a
control signallig associated with them. We will discuss the control mechanism
later.

Unary Actuator describes transition of object’s state and local relationships
based on previous object’s state. Only object that matches a pattern or it’s
direct neighbours can be affected.

Binary Actuator is a conditioned transition of an object as a result of cartesian
product of two objects matching two selector patterns. Either of two objects can
undergo transition based on state of any of the objects in the cartesian product
tuple.

1Here we assume only lowest level of the Sepro model without a constraints level. Higher
levels as well as constraints are out of scope of this article.

2This is idealized assumption which has technical implementation limitations that we will
discuss later.

5

selector

this

WHERE DO transition control

Figure 5: Unary Actuator

Definition Unary actuator is a tuple (σ,m→ T 1, n) where σ is a selector, m
is subject mode and T 1 is unary transition. n is a control signal (as in
“notification”).

selector transitionselector
left right

controlWHERE ON DO

Figure 6: Binary Actuator

Binary actuator is the only way how a new connections to potentially unrelated
objects (no direct reference) might happen.

Definition Binary actuator is a tuple (σl, σr,ml → T 2
l ,mr → T 2

r ,Γ) where σl

and σr are left and right selector respectively, T 2
l and T 2

r are left and right
binary transitions on effective subject specified by left subject mode ml

and right subject mode mr respectively. n is a control signal.

We would use the term hand to refer to the left or right selector or transition.

Model language declaration of a binary actuator is:
REACT actuator_name

WHERE (selector_patterns)
ON (selector_patterns)
DO binary_transitions

Selector

Selector is a pattern description that matches properties of objects and their
local context. Pattern is a collection of multiple predicates that test qualitative
properties or existence of relationships of an object. An object matches a selector
pattern when:

• a direct predicate matches the object
• an indirect predicate matches object’s direct neighbors

The predicates can tets for:

• Tags associated with an object: true if selector’s tags ⊂ object’s tags
• Tags not associated with an object: true if object’s tags∩selector’s tags = ∅
• Graph contains an edge from a specific slot
• Graph does not contain an edge from a specific slot

6

Definition Selector is a patter description

σ :=
{
all
match(m→ Π)

where m is a subject mode and Π is a selector pattern. We say that object
matches a selector when the selector is all or when the effective subjects of
the object match all the selector patterns Π.

Definition Symbol presence p is a case

p :=
{
present
absent

.

Definition Selector pattern Π is a tuple of mappings (St → p, Ss → p) where p
is symbol’s presence. An object matches the selector pattern if all of the
following are true:

{st|st → present} ⊂ tags(o)
∧ tags(o) ∩ {st|st → absent} = ∅
∧ {ss|ss → present} ⊂ slots(o)
∧ slots(o) ∩ {ss|ss → absent} = ∅

The language representation of the selector pattern is either a word ALL or a list of
symbols. Assume we have symbols open, empty referring to tags and symbol next
referring to a slot. For example the selector in the following actuator matches all
objects that have tag open set, have no empty tag set and there exists a relationship
at slot next from the object:
WHERE (open, !empty, next) ...

All symbols are considered to be in direct subject mode by default. Indirect
subject mode in the selector can be represented by object qualifier “dot” operator
as indirection.symbol3. For example:
WHERE next.open ...

The above matches an object where an object referred through slot next has a
tag open set.

State Transitions

State transitions (further just transitions) are descriptions of qualitative changes
of the object graph. They operate on objects and their neighbors within their

3Unlike in common general purpose programming languages, the indirection can not be
chained as in deep.deeper.deepest.symbol due to the local context constraint.

7

local context. Proposed transitions are non-divisable primitives we assume being
sufficient for any desired graph state transformations when composition of the
transitions is used.

The concrete object that is subject to transition is called effective subject of the
transition and is determined by the subject mode in the actuator.

There are two kinds of transitions: qualitative state of an object and qualitative
state of the graph. The first one operates on object’s qualitative properties -
tags and the later operates on graph’s relationships. The tags can be associated
or disassociated from an object. The relationships can be bound and unbound
within the local context of the effective subject.

Unary Transition

Definition Unary transition is a tuple T 1 = (Stag → p, Sslot → µ1) where the
first element is a qualitative transition of the effective subject and the
second element is a graph edge change from the effective subject to effective
target as described by the unary target specifier µ1.

If the p = present then the Stag is associated with the effective subject. If the
p = absent then the Stag is dissociated with the effective subject. 4

Definition Unary target specifier µ1 is a case:

µ1 :=

unbind
subject
in_subject(Sslot)
indirect(Sslot, Sslot)

The unbind case specifies that the edge from the effective subject is to
be removed. subject denotes that the target is the effective subject itself,
therefore creating a self-loop. Effective target of the in_subject case is the
object referred by the specified slot from the effective subject. The indirect
effective target is an object reffered to by the path of two slots from the
effective subject.

The above gives us the following potential subject mode combinations for creating
an edge using unary actuator. Let’s assume the effective subject having slots s
and t, and the object referred to by slot s having slot i, object referred to by
slot t having slot w.

4Alternative and more readable or understandable way of specifying which tags are to be
associated or disassociated with an object would be to use two sets of tags: set and unset.
However if the intersection of the sets is non-empty, the behaviour would be undefined. Using
the mapping we prevent such situation from happening by design.

8

Effective subject Effective target Edge
direct none removed
direct subject s→ self
direct in_subject(t) s→ t
direct indirect(t, w) s→ t.w
indirect(i) none removed
indirect(i) subject s.i→ self
indirect(i) in_subject(t) s.i→ t
indirect(i) indirect(t, w) not atomic

Constraint Indirection of effective subject and effective target is not permitted,
as the operation can be achieved by by composing two separate actuators:
one for pulling indirect object closer to the effective subject and second
for performing indirect bind to the pulled-in subject and unbinding the
subject.

Binary Transition

Binary transition is analogous to the unary transition with one difference: the
effective target specifier can specify one of the two “hands” of the selector.

Effective subject of the binary transition is the subject selected by corresponding
hand selector. For the left hand selector σl the corresponding transition is
T 2l and the effective subject of the transition is the subject determined by σl.
Analogously for the right hand transition the effective subject is determined by
the σr.

Transition hand can affect only qualities of the effective subject on the same
hand similarly to unary transition. Although transition hand can have effective
target from the same hand or from the other hand. This allows us to create new
relationships between objects that are from disconnected parts of the graph. We
refer to the effective subject from the other selector simply as other.

Definition Binary transition is a tuple T 1 = (Stag → p, Sslot → µ2) where
the first element is a qualitative transition of the effective subject and
the second element is a graph edge change from the effective subject to
effective target as described by the binary target specifier µ2.

The first element of the tuple for tags is the same as the mapping in the unary
transition.

Definition Binary target specifier µ2 is a case:

µ1 :=

unbind
other
in_other(Sslot)

9

The unbind case specifies that the edge from the effective subject is to be
removed. other denotes that the target is the effective subject of the other
hand. Effective target of the in_other case is the object referred by the
specified slot from the other hand’s effective subject.

Note that there is no indirection in the binary transition as it can be achieved
by composing multiple transitions. Neither there is possibility to create binding
within the same effective subject as it can be achieved by composing as well 5.

The following table lists allsubject mode combinations for creating an edge
between objects in the binary actuator. Let’s assume the effective subject on one
hand having slots s and i, and the effective subject on the other hand having
slot t.

Effective subject Effective target Edge
direct none removed
direct other s→ other
direct in_other(t) s→ other.t
indirect(i) none removed
indirect(i) other s.i→ other
indirect(i) in_other(t) s.i→ other.t

Transition Modes Summary

The following figure shows all possible graph transitions for edge creation for
both unary and binary actuators:

Binary modifier have limited ability to modify the state by design. Unbinding in
a binary modifier can be achieved by a combination of binary state change and
an unary UNBIND modifier. Indirection in the binary modifier can be achieved by
a combination of binary direct subject state change and an unary modifier.

Note that all state changes beyond distance of 1 from the selected object must
be composed of multiple transitions that propagate through the network. Sus-
ceptibility to being affected by other actuators along the way is intended design
feature.

Simulation

The simulation is virtually indefinite iterative evaluation of the model’s actuators
that operate on system’s state.

5This is a design decision that we are proposing at this stage of system’s evolution. We
have no firm opinion whether bindings within the same hand should be allowed or not at this
moment.

10

modified slot

u IN t

s

final state

s

t

t

s

s
t

t

s

t
u

s
u IN ts

t

u

BIND s TO THIS

BIND s TO t

BIND s TO t.u

transition

THISthis this

this this

this

t

this

t

s
u

t

u

this.t

s

BIND s.u TO THIS

BIND s.u TO t

this this.s

s
uthis s

this

this.s

t

u

this.t

s

this

s

initial state

t

hypothetical slot

objectLegend unreachable objectsubject effective subjecthand: LEFT | RIGHT
other: LEFT | RIGHT, other ≠ hand target

shand other

s
hand otherIN LEFT s -> OTHER

IN RIGHT s -> OTHER

indirect

direct

subject
mode

not atomic

unary

binary

indirect

direct

actuator

Figure 7: Possible graph transitions for edge creation

11

Given inspiration in biochemistry, the nature of the Sepro system does not impose
any evaluation order of the actuators and selection order of objects. However,
to be able to perform the simulation on Von-Neumann computer architecture
which is sequential, we need to define the order of events in the simulation, and
understand it’s impact on the simulation result. The emphasis is more on the
explicit impact description than on the actual order definition. The evaluation
order is a meta-problem that we are not trying to solve yet, but we need to
propose few solution to start with.

Assumption In this evolutionary step of the system we consider the time to
be unified globally. That means that time is the same for every entity of
the system.

Having global time of discrete nature, we can refer to each state by global time
reference t and can say that state of the system at time t is described as a state
of objects and bindings at time t.

Definition Simlation step ∆ is an approximation of system’s transition in form
of a function

Gt+1 = ∆(Gt,M)

where G0 is the graph G from the model M .

We have to keep in mind that the ∆ is not a true simulation mechanism, just
an approximation. It is so due to the assumption of global time and potential
effects of linearization.

During the simulation step the following happens:

• Every unary actuator is tested against each object and the associated unary
transition is applied to the objects that match the actuator’s selector.

• For every binary actuator a cartesian product of objects matching left
selector and right selector is determined and binary transitions are applied
to their respective effective subjects.

• Control signals are gathered and provided to the simulation controller or
observer.

As mentioned above, the order how the actuators, their evaluation and application
is executed is left to the concrete implementation of the simulation engine. The
decision whether the simulation is performed in parallel and what kind of
parallelism is used is an implementation choice of the simulation engine. It has
to be remembered that, as mentioned before, the simulation might be highly
sensitive to the order of execution.

“Sequential Scan” Simulation Method

Here we propose a simple, quite primitive yet straightforward simulation method:
Sequential scans with actuators first. This method performs the simulation step
in a single thread and considers the time to be system-global.

12

The simulation step can be described in a pseudo-language as:
FOR actuator IN unary actuators DO:

evaluate unary actuator

FOR actuator IN binary actuators DO:
evaluate binary actuator

We serialise the simulation process by applying the transitions of the system in
the order as given by a lazy selection algorithm described below. The method is
analogous to vertical and horizontal line scan of a CRT screen where an object
can be seen as a point on the screen and where the beam traverses the points in
fixed pattern. One simulation step can be modelled by a single full scan of the
whole screen. Once the beam touches a point on the screen, it does not go back
within the same full screen scan.

The unary actuator scan is depicted in the following figure:

this

Figure 8: Unary scan

The evaluation of unary actuator is a single pass through the lazy selection of
objects matching actuator’s predicates:
selection := objects matching actuator selector

FOR object IN selection DO:
IF object matches selector:

apply actuator transitions to object

The binary actuator “scans” a cartesian product of the “left” and “right” selector
of the actuator:

right

lef
t

Figure 9: Binary actuator - scan of cartesian product

The evaluation of the binary selector is as follows:
selection L := GET objects matching left selector of actuator
selection R := GET objects matching right selector of actuator

13

FOR left IN L DO:
FOR right IN R DO:

IF left does not match left selector:
CONTINUE

IF right does not match right selector:
CONTINUE

apply transition to left and right

The inner conditions are to filter out objects that might have been already
modified in the scan pass and might not fit the selection predicates any more.

modified during evaluation

Figure 10: Binary actuator - skipping

Known Issues

The scan method described above has two major factors that influence the the
simulation’s outcome:

• Order in which actuators are evaluated.
• Order in which the objects are provided to the filter.

Let’s consider two actuators A and B evaluated in the same order: first A then
B. If an object does not match predicates of A, matches predicate for B and
actuator B modifies the object in a way that it would match actuator A, the
object is not evaluated again with the actuator A. We will call this actuator
order error.

Let’s consider order of objects o1, o2, . . . , on and an actuator that by evaluating
o1 modifies o2 in a way that o3 will not match the actuator’s predicate (will lose
candidacy, will not be visited). If we provide another order, for example reverse
order, then o2 will be visited. We will call this object selection order error.

Here we suggest that how the simulation sub-steps are ordered must be known
fact to the simulator user.

For further research, it might be interesting to further investigate effect of
ordering to the outcome of certain models. For example:

14

• Randomization of the actutors, including unary and binary.
• Randomization of the objects for each iteration and actuator.
• Object-first pass: the outer loop is object loop, the inner loops are actuator

loops.

In a potential virtual laboratory where one might test different kinds of ordering
the controller might provide mechanisms to compare different outcomes based
on the orderings. This investigation is out of scope of this article, left as an
exercise to the reader.

Parallel Evaluation

Massively parallel evaluation is the ultimate goal of the system as it closely
mimics the behaviour in the real world. By massively parralel we mean one
processing unit per object per actuator observing the relevant context of the
unit-associateid object.

Simplified parallelism can be achieved by splitting the object graph into smaller
parts, performing partial evalutaions and then consolidating the results. This is
a whole are to be explored as it opens many questions, such as:

• How to synchronise the simulation states?
• How to resolve potential modifier-predicate order conflicts?
• How to consolidate conflicting modifications?
• How the consolidation method affects the outcome of the simulation?
• Which parameters of the simulation configuration affect potential errors of

the simulation and in which way?

Control Signaling

The language gives a possibility to provide signals to the simulator. Signals
are triggered together with activation of the associated actuator. The control
signalling has no direct effect on the model and it’s interpretation is given by
the simulator. It can be thought as an action to communicate unidirectionally
with the observer.

There are three kinds of signals: notify, trap and halt. The notify and trap
signals can carry a set of tags associated with them to provide more information
to the signal handlers.

• NOTIFY signals to the simulator and expectes no interruption of the simu-
lation. State of the simulation must not be changed by the handler. Use
case: monitor reached goals; trigger/start/stop measurement; visualize a
state of interest

• TRAP signals and interrupts the simulator, giving it possibility to resume the
simulation after the signal has been handled. State of the simulation might

15

be changed by the handler. Use case: goal reached and user interaction is
expected; a product has been created

• HALT signals to the simulator to terminate the simulation without possibility
of resuming it. Use case: invalid state has been reached, resuming the
simulation might yield non-sensical results; final state has been reached
and resuming the simulation might affect the result in non-meaningful way.

Language

For the Sepro system we propose a domain specific modeling language. The
language convers three aspects of the model: object prototypes, initial graph
structures and simlator or observer related information.

Model and Model Objects

The model is a list of model objects: symbol definitions, actuators and structures.

model = { model_object }

model_object = symbol_definition | unary_actuator | binary_actuator | structure

Symbols

The symbol is an identifier that can contain letters, decimal digits or the under-
score _ character. It can not start with a digit. For example open, next, site_a,
site_b.

Each symbol in the model represents an instance of a type. There can be only
one type associated with a symbol within the model. Type of a symbol can be
specified explicitly or is determined by the compiler from the first use of the
symbol in the model. Use of a symbol for different types results in an error. For
example if a symbol is used as a tag it can not be used to label a relationship
between objects.

Examples of explicity symbol definitions:
DEF TAG open
DEF TAG closed
DEF SLOT next
DEF SLOT site_a

Grammar:

symbol_definition = "DEF" symbol_type symbol symbol_type = "SLOT" | "TAG" |
"STRUCT" | "ACTUATOR"

16

When an indirect symbol needs to be specified we use the . (dot) symbol
qualification:

qualified_symbol = [symbol "."] symbol

Structures

Structure is a definition of a group of objects - a subgraph, that can be used to
initialize the world. Structure contains list of objects and bindings (edges).

struct = "STRUCT" symbol { struct_item }

struct_item = object | binding

Structure objects have identifiers that are valid withing the scope of the structure.
The identifiers are used to refer to objects in the structure binding specification.

object = "OBJ" symbol "(" { symbol } ")"

The bindings within structure can refer to objects within the same structure:

binding = "BIND" symbol "." symbol "TO" symbol

Example:
STRUCT triangle

OBJ a (node)
OBJ b (node)
OBJ c (node)
BIND a.next -> b
BIND b.next -> c
BIND c.next -> a

Worlds

World is a container specifying initial state of the simulation. It can be thought
as a list of “ingredients of the simulation primordial soup”.

In the language more worlds can be specified in the model, despite only one
world being used as a starting state of the system. If more worlds are specified
then the one with name main is used if not specified explicitly otherwise.

world = "WORLD" symbol { world_item }

world_item = integer symbol

For example the following world will yield 10 copies of structure jar and 10
objects (out of structure) with tag lid:
WORLD main

10 jar
10 (lid)

17

Actuators

selector = "ALL" | "(" { symbol_presence } ")"

symbol_presence = ["!"] qualified_symbol

unary_actuator = "ACT" symbol "WHERE" selector { unary_transition }

unary_transition = "IN" unary_subject { modifier }

unary_subject = "THIS" ["." symbol] | symbol

modifier = "BIND" symbol "TO" qualified_symbol | "UNBIND" symbol | "SET" symbol |
"UNSET" _symbol

binary_actuator = "REACT" symbol "WHERE" selector "ON" selector { bi-
nary_transition }

binary_transition = "IN" binary_subject { modifier }

binary_subject = ("LEFT" | "RIGHT") ["." symbol]

Example: Linker

We made a simple example for the purpose of demonstration of the language that
we call ‘Linker’. The model has two kinds of objects: a link node and a ‘catalyst’
we call linker. The linker has two sites: site_a and site_b. The objective is
to create chains of links when we put the linker and couple of links into the
simulation container.

The proposed process is:

• bind one site of the linker to a free link
• bind another site of the linker to another free link
• when both sites are bound then bind the links together
• release one link and free the site
• continue from binding another link to the free site

The program listing below contains actuators that satisfy the process above.
One might have noticed that the example contains explicit order specified by
transition of the linker through
DEF SLOT site_a
DEF SLOT site_b
DEF SLOT next
DEF TAG linker
DEF TAG link

REACT primer
WHERE (linker !site_a)
ON (free link)
IN LEFT

18

BIND site_a TO other
SET wait_right

IN RIGHT
UNSET Free

REACT _wait_right
WHERE (wait_right)
ON (free link)
IN left

BIND site_b TO other
UNSET wait_right
SET chain

IN right
UNSET free

ACT _chain
WHERE (chain)
IN this

UNSET chain
SET advance

IN this.site_a
BIND next TO site_b

ACT _advance
WHERE (advance)
IN this

BIND site_a TO site_b
UNSET advance
SET cleanup

ACT _cleanup
WHERE (cleanup)
IN this

BIND site_b TO none
UNSET cleanup
SET wait_right

WORLD main
30 (free link)
3 (linker)

Rejected Ideas

The ideas listed here were either rejected or postponed for further re-consideration
or re-design.

Root Object

The root object served as a globally referencable state. From simulation dynamics
perspective it was no different to any other object. The only difference with

19

other objects was that the root object could be referenced explicitly by a symbol
ROOT. Objects were able to react with the root object through binary selectors
where one of the selector operands was a root object.

From the original proposal:

There might be situations where we need to consider a global state in
a simulation. For that purpose there is one special object that we call
root. It is the only object that can be explicitly globally referenced.
Every simulation has a root object, event-though it might be unused.
Default root object is empty, has no properties and no slots.

The idea was rejected because we want to work with local interactions only.
Having a global state would open possibility to compromise the local interaction
principle.

Counters

Counters were quantitative properties of an object. The quantity stored is a
number of instances of countable quality associated with the object. A counter
can be imagined as a container able to hold multiple copies of the same tag. The
only difference is that the counter is a static property of an object.

Counters, as originally designe, were static properties can not be dis-associated
from neither associated with an object during run time. Counters can be changed
by incrementing or decrementing their values. Counters can be cleared to be
zero and they can be tested whether they are zero.

Counters were temporarily rejected because they can be partially implemented
through existing mechanisms. Whether counters should remain in the model or
not is still open for dicsussion and more research is needed.

Appendix: Symbols used

Table 3: Symbols.

Symbol
A actuator
A1 unary actuator
A2 binary actuator
G graph
Γ selector
M model
m subject mode
µ transition target sepcifier

20

Symbol
µ1 unary transition target specifier
µ2 binary transition target specifier
n signal
o object
O set of objects
p symbol presence
Π selector pattern
R set of relationships (graph edges)
S set of symbols
s symbol - any type
St set of symbols of type t
st symbol of type t
σ selector
σl selector for left subject
σr selector for right subject
t symbol type
T transition
T 1 unary transition
T 2 binary transition
T 2

l binary transition for left target
T 2

r binary transition for right target

21

	Introduction
	System Design Principles
	Model
	Model Dynamics
	Actuators
	Selector
	State Transitions
	Unary Transition
	Binary Transition
	Transition Modes Summary

	Simulation
	``Sequential Scan'' Simulation Method
	Known Issues
	Parallel Evaluation

	Control Signaling

	Language
	Model and Model Objects
	Symbols
	Structures
	Worlds
	Actuators

	Example: Linker
	Rejected Ideas
	Root Object
	Counters

	Appendix: Symbols used

